日志技术分享
长期以来,期货市场的稳定运行一直是交易所关注的重点,对于期货品种的功能发挥起到重要作用。合约交易持仓量是期货市场运行的重要指标,也是利用期货管理风险的基础指标。为增强对市场趋势的了解,提高运行预判能力,本文基于合约历史运行规律及风控措施参数,开展数据分析,提取历史数据及风控参数作为输入特征,建立基于多个机器学习算法的融合模型,利用网格搜索方式设置更优参数,进行期货合约未来五日交易量、持仓量的预测。实验结果显示,本文构建的算法模型预测交易量平均准确率接近70%、持仓量平均准确率达到83%。同时,本文以案例分析的形式证实了融合模型和网格搜索技术对于预测准确率的提升存在显著效果。
一、项目背景
期货交易是现货市场的晴雨表,为商品远期定价提供基准,具有护航实体经济稳健运行的重要意义。期货交易价格由不同参与主体共同报价撮合而成。套期保值者利用市场锁定利润管理价格波动风险,投机者尝试判断行情获取利润。当市场交易过热时,期货价格会失真并偏离现货价格,可能给投资者和套保企业带来损失;反之,当缺乏流动性时,期货价格无法准确反映市场参与者的“共识”。因此,稳定的市场参与度是期货交易合理定价的重要基础。预判市场热度对于调节市场情绪,合理利用风控措施稳定行情至关重要。本文将核心问题定义为预测市场热度,即预测品种的交易持仓情况。通常来说,期货市场交易持仓趋势受到多方面因素的影响,如期货标的价格变化,突发舆情事件,政策影响等。多因素影响下,简单的规则算法难以有效预测交易持仓情况。基于此,本文尝试从多个维度提取有效特征,并利用三个独立的机器学习模型捕捉数据之间的不同关系。最后,利用网格搜索 *** 将三个模型的结果进行加权融合输出最终的预测结果。本文组织架构如下:第二章针对历史运行数据开展分析,研究了风控参数、结算价等与交易持仓量的关系;第三章就特征提取及三个单一模型的构建进行了详细介绍;第四章描述了模型融合及权重网格搜索技术;第五章设计实验验证模型有效性并设计 *** 解释模型结果;第六章为模型可解释性研究;第七章为总结与展望。
二、历史运行分析
机器学习相关问题中,数据分析是整个数据建模的基础,决定了特征提取质量与模型最终效果。数据分析对于深入了解目标问题起到重要作用,并指导模型的迭代构建。本文数据分析涵盖了众多维度,下面挑选四个方面对交易所历史数据简要分析。
(一)主力合约的生命周期(双峰现象)
回溯历史数据,所有合约在挂牌摘牌整个周期中,都会经历交易持仓量逐渐放大随后下降的过程。其中,有较大比例的主力合约(接近40%)在挂牌摘牌的整个周期会呈现“双峰”现象。“双峰”现象即合约在成为主力之后,交易量与持仓量会经历两个峰值,其中交易量尤为明显。我们以图1、2分别展示玻璃期货1705与棉花期货1801两个合约的交易持仓走势。从图中可以看出,虽然玻璃、棉花分属于非农与农两个类别,但是交易量上都呈现出较为典型的双峰形态。该现象产生原因可能一是当合约成为主力合约之后,交易资金会快速流入,导致交易持仓量快速放大;二是前主力合约进入交割摘牌阶段,主力合约因此达到第二个高峰。双峰现象的周期性规律对于我们掌握品种运行规律及预测交易持仓起到指导性作用。
图1.玻璃1705合约交易持仓走势图
图2.棉花1801合约交易持仓走势图
(二) 品种交易持仓量与价格关系
为探索交易、持仓量的影响因素,本文着重分析价格波动与交易持仓量之间的关系。交易市场上存在一种“共识”,即认为价格的波动会引起交易持仓量的放大。因此,本文尝试计算价格波动与交易持仓量变化之间的皮尔森相关系数1 ,研究从长期运行维度来看价格波动是否会实质上引起交易量与持仓量的放大。我们定义如下三个指标:
其中T表示当前日期,N表示时间差,PT表示T日结算价格,VT表示T日交易量,HT表示T日持仓量;相应的,PT-N、VT-N、HT-N分别表示T-N日的对应数值;Pdelta表示以T日与T-N日之间价格波动比例的绝对值,Vdelta表示对应的交易量波动比例实际值,Hdelta表示持仓量波动比例实际值。我们分别计算当N设置为[1-5]日时,Pdelta与Vdelta、Hdelta之间的皮尔森系数。实验中,我们选取了2016-2018年郑商所已上市的所有品种,并对品种下的全部挂牌合约进行汇总。具体情况见下表。
表1.价格波动与交易持仓变化相关系数表
表1中PD1-HD1表示当N值取1时,Pdelta与Hdelta之间的关联系数;PD1-VD1表示当N值取1时,Pdelta与Vdelta之间的关联系数,以此类推。从表中易知,在不同N的取值下,所有品种的相关系数均为正。因此,交易持仓量的变化与价格波动的绝对值之间确实存在着正向关系。但是,学术界一般认为,当相关系数|r|0.8时,两变量间存在高度相关性;当0.6|r|0.8时,可以认为两变量具备较强相关性;当0.4|r|0.6时,两变量具备中等相关性;当0.2|r|0.4时,可认为两变量相关性较弱。从表中可发现,除少数蓝 *** 域(大于0.4),大多数品种交易持仓量的变化与价格波动幅度的关系均较弱,且间隔日期N的长短对于结论也无较明显影响。整体来看,价格波动对于交易量、持仓量趋势均有一定正向影响。在提取特征时,需要将价格波动相关数据引入模型,但需要设计模型结构捕捉非线性关系提高数据价值。
(三) 品种交易持仓与风控措施参数的长期关系
除价格波动外,本文同时研究风控参数对于交易持仓量的长期影响。风控参数的设置拟在调节市场热度,平抑行情变化。考虑到保证金、手续费等参数与交易持仓量的变化量纲不同,在分析相关参数与交易持仓量变化波动相关性时,本文决定采用变异系数(Coefficient of Variation)来衡量不同风控参数下交易、持仓量的运行情况。具体计算方式如下。
变异系数越大,交易持仓相比其平均值波动幅度越大。本文以2016-2018年各品种的相关数据为基础,分别计算不同品种运行的变异系数,并利用皮尔森系数计算风控参数与变异系数之间的关系。本文以保证金与平今仓手续费为代表进行重点分析。具体结果见表2、3。考虑到相关系数的计算要求相关风控参数经历过多次调整,因此表2、3仅保留了所选区间内符合条件的品种进行分析。
表2.保证金与品种长期波动的变异系数
表3.平今仓手续费与品种长期波动的变异系数
从表2、3可发现,整体来看,保证金及平今仓手续费数值大小与交易持仓波动变异系数的关系为负相关。当保证金或平今仓手续费增大,对应品种的交易持仓量波动比率相对更小,具体数值因品种差异而有较大的变化。观察表格,发现存在部分品种的相关系数为正的情况,可能是因为调整点聚集在单边行情或 *** 动行情下。基于上述分析,我们决定将风控措施参数引入特征序列,作为预测的基础。
(四) 品种交易持仓行情与风控措施参数的短期关系
除长期维度外,本文以2016-2018年相关数据为基础,尝试探索风控参数的短期变化对市场运行的影响。经数据分析,从全市场角度来看,保证金及手续费变化对于交易持仓量的短期影响较为随机,没有显著规律。基于此,本文决定根据交易特征将客户分为四个群体,如长线客户、短线客户、大客户及小客户2 。整体来看,保证金对于持仓量影响较明显,而平今仓手续费对于交易量影响更显著。具体见图3、4。图3中四个小图分别代表四个客户群体下保证金调整幅度与持仓量之间的关系。x轴表示保证金调整前后数值变化的大小,y轴表示保证金调整前后五日内持仓量均值的变化幅度。图中每一个点均代表历史上一次真实调整。图4中,x轴代表平今仓手续费调整幅度,y轴表示调整前后五日内交易量均值变化幅度。观察图3可知,当保证金上调时,大客户及长线客户持仓量呈现降低趋势;当保证金下调时,小客户及短线客户的持仓量呈现上涨趋势。观察图4可知,平今仓手续费上调对于短线客户交易量减少的影响较为明显,也符合普遍认知;相应的,下调手续费对于短线及小客户交易量促进有一定作用。
短期来看,风控措施参数对于不同客户群体的交易持仓有一定影响。因此,本文将风控参数措施的变化值也引入特征向量。
图3.不同客户群体下保证金调整幅度与调整点前后五日持仓量均值变化关系
图4.不同客户群体下平今仓手续费调整幅度与调整点前后五日交易量均值变化关系
三、特征工程与模型构建
基于上述分析,交易持仓量受到多重因素的影响,不同因素影响程度不一而同。本文尝试利用多模型融合方式捕捉数据之间的不同关系,挖掘深层价值,并对未来交易持仓量进行预测。具体问题定义为:针对任一合约,第T日收盘后,根据当日现行风控措施参数及历史运行数据,预估未来5个交易日的交易量与持仓量。
数值预测相关问题中,特征选择是模型构建的重要基础,决定了模型效果。本文经过数据分析及实验迭代,最终决定选择包含结算参数、行情特征、客户特征及合约特征等四大类共317维特征。其中,结算参数包含如历史价格波动、合约间价差等多维度特征;行情特征包含了历史交易持仓相关数据特征;客户特征包含不同属性客户的特征数据及不同客户群体的交易特征;合约特征重点提取了合约运行特征及合约阶段,约束预测结果。
表4.数据特征表
上述317维特征中,7维为合约约束性特征,310维为历史交易相关的时序特征。完成特征提取后,本文开始构建三个机器学习模型。具体细节如下。
(一)整合移动平均自回归(ARIMA)
在统计与经济相关领域,ARIMA(Autoregressive integrated moving average)模型是一种常用的时间序列预测算法,该模型通常应用于平稳时间序列,或通过差分平稳过程消除均值方程的非平稳性的序列。其中,自回归(AR)是统计上处理时间序列的一种 *** ,衡量序列自身在不同时刻随机变量的相关性,利用变量以往时刻的取值来预测当期时刻的取值,并假设它们为线性关系。该 *** 被广泛的应用于金融序列相关的建模问题中。移动平均模型(MA)是另一种对单一变量进行时间序列建模的 *** 。因本文的问题较为契合ARIMA的常用场景,因此决定利用它捕捉交易持仓量序列的时序关系。
(二)基于支持向量机的回归模型(SVR)
ARIMA模型是基于捕捉时序相关性直接预测未来交易量持仓量,同时我们希望利用更多的信息量以求获得更好的预测效果。我们决定利用支持向量机来预测未来交易量持仓量的涨跌幅度作为补充。支持向量机(Support Vector Machine)是一种广泛应用于分类与回归问题中的机器学习模型。该 *** 的核心是将低纬度不可分特征使用“核函数”有效的进行非线性处理,映射到高维特征空间。通过寻找高维空间中的超平面对数据进行分类或回归。
(三)序列到序列模型(Seq2Seq)
Seq2Seq模型,全称为Sequence to Sequence,是由谷歌大脑团队和Yoshua Bengio团队提出的一种广泛运用在翻译、文本自动摘要及一些回归预测问题上的深度神经 *** 。在提出之初,Seq2Seq主要被用来解决自然语言处理相关的问题。但因其强大的时序关系挖掘能力,近年来也被逐渐应用于数值型序列的预测问题中。如图所示,本文所用 *** 通过编码器(Encoder)与解码器(Decoder)两个过程将过往十日的行情特征作为输入序列,将其映射为未来五日的交易量或持仓量序列。编码器利用非线性函数将输入序列组合为隐藏层的隐藏向量,该向量具备表达输入序列信息及潜在关系的能力。解码器将传递来的隐藏向量进行解码,并结合输入的T~T+4日的市场行情特征,逐日预测未来T+1~T+5日的交易持仓情况。
图5.Seq2Seq模型流程图
四、多算法融合模型构建
期货市场行情瞬息万变,客户群体的交易持仓行为受到众多因素的影响,因此单一模型容易对历史数据产生过拟合现象,并且面对来
棉花期货收购价有所下降,现货价格在10.2-10.4/公斤,进一步上涨的预期被压制。10块现货价格对应盘面价格21500,期货现货价格接近。如果现货价格一直维持在10块甚至更低,这个价位的期货盘面应该是顶的。
供应端不缺棉花,海外配额有效,目前国内外棉花价差处于较大位置,从外部进口的可能性很高,棉花负价格持续上涨。需求:向下,替代品和成品库存上升至近六年高位。再加上现在的海外配额,棉花企业对新棉花的高价有抵触情绪。需求极度疲软、供需失衡的格局在不断变化。之后,如果籽棉维持不了现在的价格或者不涨,顶幅明显,在20000-22000之间。
拓展资料:棉花行情
1.从时间周期来看,棉花可能会持续上涨,直到2022年1月初。从空间结构上看,棉花顶部可能出现在20675,可能会增加4000点。如果棉花走出上涨行情,对新赛股份有利。
2.中国棉花市场仍存在较大缺口,纺织行业棉花需求持续,新疆棉农补贴有望延续。2020年喀什巴楚县籽棉规模开盘价将在6.1元/斤,更高上涨至8.6元/斤,之后逐步回落至6.4-6.6元/斤区间。所以2021年土地承包费也增加了,农民种粮成本也增加了。市场分析人士认为,2021年棉花价格应该不会下跌,而是会小幅上涨。
3.中国在新冠肺炎的疫情防控取得了巨大成就,生产经营活动进一步恢复,纺织品产销持续稳步提升,企业订单充足,开工率高,成品销售顺畅,纱线利润高,这是近10年来少有的,棉花需求持续旺盛。据悉,棉花是我国种植业中产业链最长的大田经济作物,商品率在95%以上,但棉花产业仍存在诸多不足。40年前,中国一个省的一种农产品产量只占全国的2.5%,而现在却占到了全球产量的20%,接近第二大生产国印度,比第三大生产国美国高出20%。这个省是新疆自治区,这个产品是棉花。作为世界上更大的棉花消费国和第二大棉花生产国,新疆一直是我国主要的棉花生产地。新疆棉花产量520万吨,约占国内产量的87%,国内消费量的67%。
4.棉花是世界上最重要的农作物之一,产量大,生产成本低,使得棉花产品更加便宜。棉纤维可以制成各种面料,从轻薄透明的阻隔纱到厚实的帆布和平绒,适用于 *** 各种服装、家具布和工业用布。棉织物牢固耐磨,可高温水洗熨烫。棉织物吸湿除湿快,穿着舒适。如果需要保暖,可以通过拉毛整理将面料表面拉毛。通过其他整理工艺,棉织物还可以防污、防水、防霉;提高织物的抗皱性,使棉织物少熨烫甚至不熨烫;减少织物在洗涤过程中的收缩,使收缩率不超过1%。
截至2020年8月10日,棉花2011期货的最新行情价格:12465.00元/吨;棉花2101期货的最新行情价格:12770.00元/吨。
温馨提示:
1、由于市场行情实时变动,此数据仅供参考,具体以您交易时实际的行情价格为准。
2、所有金融类衍生品的投资都具有风险性,对于投资者的金融风险管理能力有着较高的要求,不适合没有专业金融知识的投资者。除了基础的金融知识外,投资者还应做到自身风险承受的控制,不可盲目的进行投资。
应答时间:2020-08-12,最新业务变化请以平安银行官网公布为准。
[平安车主贷] 有车就能贷,更高50万
;outerSource=bdzdhhr_zscdouterid=ou0000250cid=bdzdhhr_zscddownapp_id=AM001000065
棉花2011期货的最新行情价格:12465.00元/吨;棉花2101期货的最新行情价格:12770.00元/吨。
一、 温馨提示:
1、由于市场行情实时变动,此数据仅供参考,具体以您交易时实际的行情价格为准。
2、所有金融类衍生品的投资都具有风险性,对于投资者的金融风险管理能力有着较高的要求,不适合没有专业金融知识的投资者。除了基础的金融知识外,投资者还应做到自身风险承受的控制,不可盲目的进行投资。
二、正确看待棉花期货价格是一个综合.复杂的问题.也就是自己要学会通过电脑.电视手机报纸等汇总信息分析信息.冷静看待市场的大起大落.做到大起时不跟风买进大落时不急于出手.我总结一句话;人家抢时你出.人家抛时你买进.有这样的思路保你准赢不准输不同的期货品种波动规律是不一样的,掌握规律,做好几个品种就够了!想做好期货:要学会等待机会,不能频繁操作,手勤的人肯定亏钱! 不需要看太多复杂的指标,大繁至简,顺势而为;只需看分时线,利用区间突破,再结合一分钟K线里的布林带进行短线操作,等待机会再出手,止损点要严格设置在支撑和阻力位,止盈可以先不设:这样就可以锁定风险,让利润奔跑!止损点一定一定要在系统里设好:他可以克服人性的弱点,你舍不得止损,让系统来帮你!我们是个团队,指导操作同时也代客操盘,利润分成! 做久了才知道,期货大起大落,我们不求大赚,只求每天稳定赚钱。
拓展资料:
1.从基本面我们来看,1月份美国农业部的供需数据由于 *** 关门事件没能发布,如果按照之前数据国际棉花产不足需,而理论上说中国还有较多库存可以弥补。单从国内来看,新疆棉花加工已经接近尾声,根据目前进度和数据统计最终新疆产量预计靠近510万吨,加上内地棉花预估在560-570万吨水平。另外考虑到正常发放与增发的配额以及商业库存供应,在中美贸易战没有确定结果的情况下,消费进入淡季,按道理应该没有大幅上涨的可行性。
2.但是进入2019年有一些新情况需要我们不断动态去考量,1月7日开始中美双方进行了副部长级的谈话,就落实两国元首阿根廷会晤重要共识进行积极和建设性讨论,最终谈判虽然没有得出结论,但是给进一步深入磋商提供了重要基础,国务院副总理刘鹤也定于1月30日赴美继续磋商,这些举措可以看出双方都在真诚的朝着贸易战停火方向在走。给市场提供了一些积极信号,未来的棉花消费受到谈判结果影响的可能较大,但从盘面来看,之前价格的下跌也已经消化了之前的利空效应。 整体来说,2019年的棉花难出现一边倒的情况,多空均有,不支持上涨的同时也没有深跌的条件,个人认为全年更大可能将是区间震荡运行。
网站首页:最新期货开户网
期货开户微信:527 209 157
本文链接:http://jienve.com/post/32223.html
Copyright 2010-2024 最新期货开户网 网站地图 微信:527 209 157 湘ICP备18014167号