日志技术分享
量化交易是利用计算机技术分析海量历史数据,通过分析数据总结出 "大概率 "盈利策略的交易方案,其更大的优势是减少人的情绪对交易策略的影响,特别是当市场狂躁或悲观时,量化交易可以避免很多不理性的投资决策。例如,大多数人都有追涨杀跌的倾向,与主观交易相比,可以在一定程度上降低风险。在做量化交易时,很多人容易犯一个错误,就是拿过去很长一段时间的历史数据做回测,优化参数,优化的目标是利润更大化。这种优化参数的 *** ,往往在你运行实盘后,会发现,与你过去回测的结果相差很大,为什么过去回测那么赚钱,而一实盘就亏钱呢?
其实你用的是历史数据,你过去可以赚很多钱,在未来很长一段时间内可能不会出现。过去,你可以在一个趋势中优化你的策略,使利润更大化。因为计算机匹配了所有的参数组合,在运行这些参数组合后,它计算出最有利可图的参数组合。计算机倾向于优化一个趋势,使你的利润更大化。
量化基金是利用数学、统计学、信息技术等量化投资 *** ,进行选股、择时、对冲等一系列操作,进而获得投资收益的一种基金。投资者在日常工作中经常会接触到主动管理型基金。例如,主动管理型基金通过对上市公司的财务分析和实地调研,决定对一些公司进行投资。这些基金的创始人和基金经理往往有数学、计算机和其他学科的背景。对上市公司的研究主要是研究一些特定指标对股票价格的影响,建立模型,通过计算机自动下单,从市场波动中获得超额收益。
小编针对问题做得详细解读,希望对大家有所帮助,如果还有什么问题可以在评论区给我留言,大家可以多多和我评论,如果哪里有不对的地方,大家可以多多和我互动交流,如果大家喜欢作者,大家也可以关注我哦,您的点赞是对我更大的帮助,谢谢大家了。
一文看懂量化投资策略
闲话基
量化投资在近些年受到越来越多的关注,包括规模、策略、业绩。量化投资,是指通过借助统计学、数学 *** ,运用计算机从海量历史数据中,寻找能够带来超额收益的多种“大概率”策略,按照策略构建的数量模型严格执行投资,力求获得长期稳定可持续高于平均的超额回报。
跟传统的主动管理 *** 相比,量化投资是高投资广度、低投资深度的一种投资 *** 。量化投资强调纪律投资,可以克服投资者主观情绪的影响。
现在市场上运用的策略有很多种,下面来看看主流的几种策略。
一、市场中性策略
市场中性策略是国内使用最多的策略。根据CAPM理论,股票收益由两部分组成,一部分是市场整体风险的beta收益,一部分是股票自身风险带来的alpha收益。中性策略是从消除市场系统性风险的维度出发,通过同时构建多头和空头头寸对冲市场风险,以获得较稳定的绝对收益。国内通常使用的操作 *** 是,买入股票,同时卖空与股票等市值的股指期货。盈利模式是,所买股票超越大盘的涨跌幅度。市值对冲并不是完全的beta对冲,但可以减少计算量,降低调仓率,为国内投资机构普遍使用。
Alpha策略关键点是选出的股票组合收益要持续跑赢沪深300指数,在市场上涨时平均涨幅大于沪深300指数,在市场下跌时平均跌幅小于沪深300指数,并且可持续稳定。
通常管理人根据估值、成长性、市值、动量、预期变动、资金关注、技术指标、事件、业绩等多个维度进行量化选股,构造投资组合,同时以沪深300行业配置比例为基准,对系统筛选出的股票根据宏观经济和行业景气进行差异化配置,并定期根据各因子变动进行动态调整组合。
构建中性策略,买入100元股票组合,卖空100元股指期货,多头与空头组合价值相等:
1、市场上涨:股票组合(上涨赚钱)+指数收益(上涨亏钱)=10%+(-7%)=3%
2、市场下跌:股票组合(上涨赚钱)+指数收益(上涨亏钱)=(-7%)+10%=3%
3、市场震荡:股票组合(上涨赚钱)+指数收益(上涨亏钱)=10%+(7)=17%
Alpha策略最主要风险在于选股策略上。
选股模型可能会因为股票市场规律性变动、突发事件和统计模型本身的概率属性,在某些时间段出现失效,导致做多的股票跑输市场出现短期亏损。这需要基金经理能不断完善投资模型和操作技巧提升获胜概率。此外,Alpha策略还收到基差的影响。大部分时候会有一定的升贴水损失,策略对基差的风控非常重要。
二、套利策略
1、统计套利
统计套利是对历史数据进行统计分析,估计相关变量的概率分布,结合基本面数据分析,用来进行套利交易。
运用统计分析工具,对一组相关联的价格之间的关系的历史数据进行研究分析,研究关系的历史稳定性,并估计其概率分布,确定分布中的极端区域,即否定域。当真实市场上的价格关系进入否定域,可以认为这种价格关系不可长久持续,此时有较高的成功概率进场套利。
2、期现套利
期现套利指利用期货与现货基差扩大产生的套利机会,做多被低估标的,做空被高估标的,待期现基差回归至合理范围后,平仓离场的低风险策略。
期现套利策略,根据沪深300股指期货与沪深300指数基差到期时必定收敛的交易机制。当期货指数与沪深300指数基差足够大时,可以通过构建一个反向组合,获得基差收敛过程中产生的收益。目前国内只能进行“做空基差”的正向套利,即当基差大于0的时候,买入股指ETF或者一揽子股票,同时卖出等市值股指期货,待价差收敛后平仓。当基差小于0时,由于融券不足,无法通过卖出股指ETF或者一揽子股票同时买入等市值的股指期货进行“做多基差”的反向套利。当期货价格深深贴水的时候,因融券存在障碍反向套利被切断,贴水状态自由发展,只能通过市场大幅度反弹,多头的投机者重新将价格抬升至升水的状态。这也是市场贴水一直无法及时恢复的重要原因。
期现套利的主要风险在于市场价格出现剧烈波动导致浮亏,具体表现为所跟踪标的之间的基差出现长时间不回归甚至反向逆转,期现收益无法有效覆盖交易成本、冲击成本、现金成本等风险。
3、ETF套利
ETF套利,是指投资者可以在一级市场通过置顶的ETF交易商想基金管理公司,用一揽子股票组合申购ETF份额,或者把ETF份额赎回成一揽子股票组合,同时可以在二级市场以市场价格买卖ETF。
假设某只ETF成分股暴跌,使得该ETF净值迅速走低,但该ETF的市场价格未能及时跟上,两者短暂地出现一个价差,此时可以买入ETF一揽子股票组合申购成ETF,然后将ETF在二级市场卖出,实现低买高卖,获取价差。
ETF套利的两种交易顺序,一种是从股票二级市场买入一揽子股票,按一定比例换成ETF份额,然后在二级市场卖出ETF份额,前提是一揽子股票价格比ETF价格低,出现溢价;另一种是,从ETF二级市场买入份额,按照一定比例兑换成一揽子股票,在拿到股票二级市场卖出,这样的前提是ETF价格低于一揽子股票价格,出现折价。
4、分级基金套利
分级基金有2种套利模式。
一种方式是当母子基金比价出现折溢价时可进行套利。当A/B份额的组合价格大于母基金净值时,存在整体溢价套利机会。通过场内申购母基金份额,分拆成A和B并在二级市场卖出完成溢价套利。当A/B份额的组合价格小于母基金净值时,存在整体折价套利机会。通过在二级市场按比例买入A类份额和B类份额,申请合并成母份额并赎回完成折价套利。
但是折溢价套利不能实时完成,需要面临1-2个交易日的价格波动风险。可以通过股指期货对冲管理风险敞口。
一般在牛市中溢价套利机会比较多,在震荡市场中折价套利机会更多、胜率更高。
另一种套利方式是,市场下跌时,含下折算条款的分级基金A份额包含的期权价值套利,同时还有在整体折溢价套利基础上演的底仓-对冲溢价套利、循环折价套利。
三、CTA策略
CTA策略是投向期货市场,使用历史数据,通过统计、数学、编程的 *** 找到盈利规律。分为趋势策略和套利策略。
趋势策略是跟随者市场上涨做多,市场下跌做空,因此在任何一种期货商品进入趋势后,CTA策略就会获得良好的收益空间。
套利策略是通过跨期限、跨市场、跨品种等不同合约之间的“价差回归”,锁定套利空间。
跨期限是指同一交易品种,不同交易周期间的套利。历史数据表明期货不同合约价格相关性高,价差出现稳定的统计特征。当两个不同到期月份合约/不同品种合约之间的价差偏离合理区间时,可以通过在期货市场同时买入低估值合约和卖出高估值合约,在价差回归后进行反向平仓,进行跨期限套利交易。
更加具体地说,跨期套利是指不同月份期货支架的套利。通过多远空近或多近空远,来买卖同一市场同种商品不同到期月份的期货合约,利用不同到期月份合约的价差变动来获利的套利模式。
交易过程如下:
跨品种与跨期现套利逻辑相似,只是使用在同一期限不同品种合约之间,具体投资流程如下:
跨市场套利,在某个交易所买入(卖出)某一交割月份的某种商品合约,同时在另一个交易所卖出(买入)统一交割月份的同种商品合约,在有利时机分别在两个交易所对冲获利。
跨市场策略涉及外汇兑换、国际期货交易对冲,交易实现难度大,国内用得少。
由于期货具有杠杆属性,这类策略持仓的市值往往很大,有时候甚至超过产品资产总值,导致收益率的波动率是所有量化策略中更大的。在市场出现连续震荡行情时,这样策略由于杠杆属性会出现较大的回撤。另外一个对这类策略的一个限制是,目前市场上活跃交易的期货品种不多,高频交易很大程度倚重于品种成交量,开平仓时间间隔较短,使得策略容量不大。
; 量化投资是指通过数量化方式和计算机程序发出买卖指令,以获取稳定收益为目的的交易方式,在投资的过程中需要用到数学、统计学、信息技术等知识。
市场上的量化策略包括市场多头趋势和市场表现中性两部分,市场多头趋势中包含指数增强和主动量化两个部分,市场表现中性中包括量化对冲,也就是所谓的阿尔法策略(α策略)。
α策略就是指采用金融衍生工具对冲市场风险以后,去获得相对来说比较稳定的α收益,这类产品在几年也获得了比较大的发展。量化其实是一个非常宽泛的概念,涉及到各种不同的资产类别,比如说商品期货上,量化有一系列的CTA策略,另外,还有多策略量化。
如果是从公募基金的角度来看,市场上主流的量化策略主要包括三类:
之一类是主动量化策略
主动量化策略是通过量化的方式来选股,再结合主动的基本面筛选,构建这样一类主动加量化结合的策略。
第二类是指数增强策略
指数增强是指首先跟踪某一个指数,一般是市场上比较主流的宽基指数,比如沪深300或者中证500甚至有中证1000的指数,在这个指数基础上会追求长期稳定的超额收益,也就是增强的阿尔法部分。
第三类量化对冲的阿尔法策略
量化对冲的阿尔法策略的核心,还是指数增强的组合,去获得相对于指数的超额收益,但同时会引入股指期货做对冲,把市场或者我们称之为指数的波动剥离掉,获得比较稳定的阿尔法收益。
这类策略在过去的五年,尤其是的两到三年,规模也获得非常大的增长。从2015年的150亿左右的规模增长到现在的650亿左右,也是公募基金中现在非常主流的一类策略。
交易策略,量化策略,主观策略,常见策略。
交易策略:一个完整的交易策略一般包括交易标的的选择,进出场时机的选择,仓位和资金管理等几个方面。按照人的主观决断和计算机算法执行在策略各方面的决策中的参与程度的不同,可以将交易策略分为主观策略和量化策略。
主观策略:主观策略主要依靠投资者的主观判断,期货市场的投资者通过对产业上中下游、供需、宏观经济预期等的调查做出自己的判断。类似股票市场的主观投资者通过深入研究行业的各个方面,调查行业内的上市公司,形成交易决策。
量化交易注意事项
在量化交易中,交易规则、参数和回测都要依靠历史数据计算获得。我们无法判断这些从历史数据中获得的规律能否在未来的市场中持续有效,所构建的交易模型也无法判断能否应用。
简单的量化因子和策略更容易让人理解和接受,但越是简单的策略越容易被人们知悉,量化交易所获得的超额收益也越低。
网站首页:最新期货开户网
期货开户微信:527 209 157
本文链接:http://jienve.com/post/22424.html
Copyright 2010-2024 最新期货开户网 网站地图 微信:527 209 157 湘ICP备18014167号