日志技术分享
偷懒是人类的天性,每个人都希望以最小的投入来获得巨大的回报。所以在面对复杂问题的时候,总是喜欢用一种简单的思维来分析当下的情况,虽然准确度并不是很高,但是能够满足当下人们的需求。
但是随着时代的进步,股票市场的变化越来越复杂,我们每天会遇到大量的信息需要处理,需要判断出对市场的影响。面对越来越复杂的市场,传统的金融学理论不能够做出合理的解释,这个时候就会诞生出新的理论来解释市场行为,其中最有代表性的是混沌理论和分形理论等非线性科学。经过大量研究证据表明,相比传统金融学说,非线性科学更适合用来分析复杂的市场变化,揭示出市场变化的规律。
分形理论的创始人芒德勃罗在研究分形理论的时候,发现股票市场的变化也符合分形理论中的自相似性,而自相似性其实就是波浪理论中的大浪套小浪。所以波浪理论和分形理论他们其实是一个东西,在熟练的运用波浪理论之前,必须对分形理论有一个大体的了解。
科学的目的总是为了把世界的复杂性还原成简单的规则。
我们最常见的股票,期货,外汇等交易品种,虽然影响价格变化的因素很多,想要准确分析出未来的价格变化看似是一个非常复杂的问题,但是对分形理论而言,越是复杂的事情,处理起来越是简单。
股票价格的变化作为一种没有特征长度而又具有无限嵌套的自相似几何结构,一方面高度复杂,另一方面又特别简单。它之所以复杂,是因为影响股票价格的因素太多,每一个消息都会引发市场的剧烈变化:但又非常简单,是因为股票价格的变化可以运用一种简单的迭代操作来生成。在自然界中,几乎所有的复杂系统都存在着反馈演化的特征。股票价格的变化规则非常简单,这种简单规则通过不断迭代,最后诞生出了复杂的股票行情。
波浪理论诞生之初,是一个很不完善的市场分析,波浪理论的诞生时间比分形理论的诞生时间还要早。但是随着分形理论的蓬勃发展,波浪理论的应用缺陷不断被市场完善,以我这些年的亲身经历,我只需要把书中没有提及的核心知识点补充齐全,对普通投资者而言准确的分析出股票未来的趋势,应该不是什么难事。
本文部分内容来源
《分形几何的创立与复杂性研究_纪念波努瓦_芒德勃罗诞辰90周年_李润珍》
中信银行601998。
中等业绩大盘股。
宏观经济方面看,上周国家政策再融资拖累银行表现,加之地产方面的利空使得大盘一度手跌破2900。所以,基本面的消息需要市场的消化。
另外,中信银行 、宁波银行、北京银行恐因前期放贷过度,导致公司一季度经营现金下降过快,出现流动性不足的现象。虽然这些公司可在未来的经营活动中通过适度放缓贷款速度,相应增加存款作为补充来扭转这种局面,但随着放贷量减少,公司下半年的利润增加将无法确认,全年预定业绩任务恐也将难以完成。
从技术面看,该股中短期在一个三角形形态内运行,并在上一周的调整后在下方支撑下处获得支撑。但是,MACD指标显示,该股目前依旧处于空头行情中,只是下跌的速度有所减缓。所以,可以等待KD出现金叉,同时以10日移动平均线作为另一个辅助指标进行确认后,再考虑建仓。
从大盘来看,尚不能确定其是否已经企稳。因为,从趋势来看,市场完全有回补去年九月份缺口的理由。故对于601998来讲,近日还是以少进多看为上。但待大盘企稳后,要及时抓住机会。
分形几何(Fractal Geometry)的概念是由曼德布罗特(B.B.Mandelbrot.1975)在1975年首先提出的.几十年来,它已经发展成为一门新型的数学分支.这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学,并且实际上正起着把现代科学各个领域连接起来的作用,分形是从新的角度解释了事物发展的本质.
分形(fractal)一词最早由B.B.Mandelbrot于1975年从拉丁文fractus创造出来,《自然界中的分形几何》(Mandelbrot,1982)为其经典之作.更先它所描述的是具有严格自相似结构的几何形体,物体的形状与标度无关,子体的数目N(r)与线性尺度(标度r)之间存在幂函数关系,即N(r)∝1/rD.分形的核心是标度不变性(或自相似性),即在任何标度下物体的性质(如形状,结构等)不变.数学上的分形实际是一种具有无穷嵌套结构的极限图形,分形的突出特点就是不存在特征尺度,描述分形的特征量是分形维数D.不过,现实的分形只是在一定的标度范围内呈现出自相似或自仿射的特性,这一标度范围也就称为(现实)分形的无标度区,在无标度区内,幂函数关系始终成立.
分形理论认为,分形内部任何一个相对独立的部分,在一定程度上都是整体的再现和相对缩影(分形元),人们可以通过认识部分来认识整体.但是分形元只是构成整体的单位,与整体相似,并不简单地等同于整体,整体的复杂性远远大于分形元.更为重要的是,分形理论指出了分形元构成整体所遵循的原理和规律,是对系统论的一个重要的贡献.
从分析事物的角度来看,分形论和系统论体现了从两个极端出发达到对事物全面认识的思路.系统论从整体出发来确立各部分的系统性质,从宏观到微观考察整体与部分的相关性;而分形论则是从部分出发确立整体性质,沿着从微观到宏观的方向展开.系统论强调部分对整体的依赖性,而分形论则强调整体对部分的依赖性,两者的互补,揭示了系统多层次面、多视角、多方位的联系方式,丰富和深化了局部与整体之间的辩证关系.
分形论的提出,对科学认识论与 *** 论具有广泛而深远的意义.之一,它揭示了整体与部分之间的内在联系,找到了从部分过渡到整体的媒介与桥梁,说明了部分与整体之间的信息“同构”.第二,分形与混沌和现代非线性科学的普遍联系与交叉渗透,打破了学科间的条块分割局面,使各个领域的科学家团结在一起.第三,为描述非线性复杂系统提供了简洁有力的几何语言,使人们的系统思维 *** 由线性进展到非线性,并得以从局部中认识整体,从有限中认识无限,从非规则中认识规则,从混沌中认识有序.
分形理论与耗散结构理论、混沌理论是相互补充和紧密联系的,都是在非线性科学的研究中所取得的重要成果.耗散结构理论着眼于从热力学角度研究在开放系统和远离平衡条件下形成的自组织,为热力学第二定律的“退化论”和达尔文的“进化论”开辟了一条联系通道,把自然科学和社会科学置于统一的世界观和认识论中.混沌理论侧重于从动力学观点研究不可积系统轨道的不稳定性,有助于消除对于自然界的确定论和随机论两套对立描述体系之间的鸿沟,深化对于偶然性和必然性这些范畴的认识.分形理论则从几何角度,研究不可积系统几何图形的自相似性质,可能成为定量描述耗散结构和混沌吸引子这些复杂而无规则现象的有力工具,进一步推动非线性科学的发展.
分形理论是一门新兴的横断学科,它给自然科学、社会科学、工程技术、文学艺术等极广泛的学科领域提供了一般的科学 *** 和思考方式.就目前所知,它有很高程度的应用普遍性.这是因为,具有标度不变性的分形结构是现实世界普遍存在的一大类结构,该结构的含义十分丰富,它不仅指研究对象的空间几何形态,而是一般地指其拓扑维(几何维数)小于其测量维数的点集,如事件点的分布,能量点的分布,时间点的分布,过程点的分布,甚至是意识点、思维点的分布.
分形思想的基本点可以简单表述如下:分形研究的对象是具有自相似性的无序系统,其维数的变化是连续的.从分形研究的进展看,近年来,又提出若干新的概念,其中包括自仿射分形、自反演分形、递归分形、多重分形、胖分形等等.有些分形常不具有严格的自相似性,正如定义所表达的,局部以某种方式与整体相似.
分形理论的自相似性概念,最初是指形态或结构的相似性,即在形态或结构上具有相似性的几何对象称为分形,研究这种分形特性的几何称为分形几何学.随着研究工作的深入发展和领域的拓展,又由于一些新学科,如系统论、信息论、控制论、耗散结构理论和协同论等相继涌现的影响,自相似性概念得到充实与扩展,把信息、功能和时间上的自相似性也包含在自相似性概念之中.于是,把形态(结构)、或信息、或功能、或时间上具有自相似性的客体称为广义分形.广义分形及其生成元可以是几何实体,也可以是由信息或功能支撑的数理模型,分形体系可以在形态(结构)、信息和功能各个方面同时具有自相似性,也允许只在某一方面具有自相似性;分形体系中的自相似性可以是完全相似,这种情况是不多见的,也可以是统计意义上的相似,这种情况占大多数,相似性具有层次或级别上的差别.级别更低的为生成元,级别更高的为分形体系的整体.级别愈接近,相似程度越好,级别相差愈大,相似程度越差,当超过一定范围时,则相似性就不存在了.
分形具有以下几个基本性质:
(1)自相似性是指事物的局部(或部分)与整体在形态、结构、信息、功能和时间等方面具有统计意义上的相似性.
(2)适当放大或缩小分形对象的几何尺寸,整个结构并不改变,这种性质称为标度不变性.
(3)自然现象仅在一定的尺度范围内,一定的层次中才表现出统计自相似性,在这样的尺度之外,不再具有分形特征.换言之,在不同尺度范围或不同层次上具有不同的分形特征.
(4)在欧氏几何学中,维数只能是整数,但是在分形几何学中维数可以是整数或分数.
(5)自然界中分形是具有幂函数分布的随机现象,因而必须用统计的 *** 进行分析和处理.
目前分形的分类有以下几种:①确定性分形与随机分形;②比例分形与非比例分形;③均匀分形与非均匀分形;④理论分形与自然分形;⑤空间分形与分形事件(时间分形).
分形研究应注意以下几个问题:
(1)统计性(随机性).研究统计意义上的分形特征,由统计数据分析中找出稳态规律,才能最客观地描述自然纹理与粗糙度.从形成过程来看,分形是一个无穷随机过程的体现.如大不列颠海岸线的复杂度是由长期海浪冲击、侵蚀及风化形成的,其他许多动力过程、凝聚过程也都是无穷随机的,不可能由某个特征量来形成.因此,探讨分形与随机序列、信息熵之间的内在联系是非常必要的.
(2)全局性.分形是整体与局部比较而存在的,它包括多层嵌套及无穷的精细结构.研究一个平面(二维)或立体(三维)的粗糙度,要考虑全局范围各个方向的平稳性,即区别各向同性或各向异性分布规律.
(3)多标度性.一个物体的分形特性通常是在某些尺度 *** 现出来,在另一些尺度下则不是分形特性.理想的无标度区几乎不存在,只有从多标度中研究分形特性才较实际.
模型的建立,其实是分形(相似性)模型的建立.利用相似性原理,建立模型单元,对预测单元进行分形处理和预测.
分形的正问题是给出规律,通过迭代和递推过程产生分形,产生的几何对象显然具有某种相似性.反问题叫做分形重构.广义而言,它指任何一个几何上认为是分形的图形,能否找到产生它的规律,以某种方式来生成它.当我们研究非线性动力学时,混沌动力学会产生分形,而分形重构则是动力学系统研究的逆问题.由于存在“一因多果”、“多因一果”,由分维重构分形还需加入另外参数.
临界现象与分形有关.重整化群是研究临界现象的一种 *** .该 *** 首先对小尺寸模型进行计算,然后被重整化至大的或更大的尺度.如果我们有网格状的一组元素,每个元素具有一定的渗透概率,重整化群 *** 的一个应用就是计算渗透的开始问题.当元素渗透率达到某一临界值时,这一组元素的渗透流动就会突然地发生.一旦流动开始后,相联结元素之间便具有分形结构.
自组织临界现象的概念可以用来分析地震活动性.按照这个概念,一个自然界的系统处在稳定态的边缘,一旦偏离这个状态,系统会自然地演化回到边缘稳定的状态.临界状态不存在天然的长度标度,因而是分形的.简单的细胞自动机模型可以说明这种自组织临界现象.
分形理论作为非线性科学的一个分支,是研究自然界空间结构复杂性的一门学科,可从复杂的看似无序的图案中,提取出确定性、规律性的参量.既可以反演分形结构的形成机制,又可以从看似随机的演化过程(时间序列)中推测体系演化的结果,近年来倍受地球科学家的注意.在地质统计学,孔隙介质、储层非均匀性及石油勘探开发,固相表面或两相界面,岩石破裂、断层及地震和地形、地貌学等地球科学各个领域得到了广泛的应用.
自20世纪80年代初以来,一些专家学者注意到了地质学中的自相似现象,并试图将分形理论运用于地学之中.以地质学中普遍存在的自相似性现象、地质体高度不规则性和分割性与层次性、地质学中重演现象的普遍性、分形几何学在其他学科中应用实例与地质学中的研究对象的相似性、地质学中存在一些幂函数关系等为内在基础,以地质学定量化的需要、非线性地质学的发展及线性地质学难以解决诸多难点、分形理论及现代测试和电算技术的发展为外在基础,使分形理论与地质学相结合成为可能,它的进一步发展将充实数学地质的研究内容并推动数学地质迈上一个新台阶.目前,分形理论应用于地球科学主要包括以下两个方面的研究:
(1)对“地质存在”——地质体或某些地质现象的分形结构分析,求取相应分形维数,寻找分维值与有关物理参量之间的联系,探讨分形结构形成的机理.这方面的研究相对较多,如人们已对断裂、断层和褶皱等地质构造(现象)进行了分形分析,探讨分维值与岩石力学性质等之间的关系;从大到海底(或大陆)地貌,小到纳米级的微晶表面证实了各类粗糙表面具有分形特征;计算了河流 *** ,断裂 *** ,地质多孔介质和粘性指进的分维值以及脉厚与品位或品位与储量等之间的分形关系.
(2)对“地质演化”——地质作用过程进行分形分析,求取分形维数并考察其变化趋势,从而预测演化的结果.例如,科学家们通过对强震前小震分布的分形研究表明,强震前普遍出现降维现象,从而为地震预报提供有力理论工具.当今的研究,不仅仅局限于分维数的计算,分形模型的建立;而更着重于解释地质学中引起自相似性特征的原因或成因,自相似体系的生成过程及模拟,以及用分形理论解决地质学中的疑难问题与实践问题,如地震和灾害地质的预报、石油预测、岩体力学类型划分、成矿规律与成矿预测等.地球化学数据在很大程度上反映了地质现象的结构特征.分维是描述分形结构的定量参数,它有可能揭示出地球化学元素空间分布的内在规律.
分维与地质异常有一定的关系.我们可以对不同地段以一定的地质内容为参量对比它们分维大小的差异,以此求得结构地段的位置及范围,从而确定地质异常;也可以对不同时期可恢复的历史地质结构格局分别求分维,还可以确定分维背景值.分形是自然界中普遍存在的一种规律性.
总之,分形理论已经渗透到地学领域的各个角落,应用范围涉及地球物理学、地球化学、石油地质学、构造地质学及灾害地质学等.
网站首页:最新期货开户网
期货开户微信:527 209 157
本文链接:http://jienve.com/post/21044.html
Copyright 2010-2024 最新期货开户网 网站地图 微信:527 209 157 湘ICP备18014167号